Category: Uncategorized

C40 Food Systems wins the Food Planet Prize, the $2-million environmental award, for shifting millions of meals in major cities to be healthier and more sustainable for people and the planet

The Curt Bergfors Foundation is honored to announce that C40 Food Systems, a global network, was awarded the Food Planet Prize, the world’s biggest environmental award on Friday, 28 June. This recognition highlights their exceptional contributions and strong potential to transform urban food systems to benefit people and the planet.

As urbanization continues to surge, 80% of all food produced globally is expected to be consumed in cities by 2050. Moreover, food is currently the biggest source of consumption-based emissions in major cities (13-20%).

C40’s Food Systems Network works directly with its 50+ member cities from around the world to make it easier for residents to eat food that is good for people, the planet, and prosperity by developing healthy, equitable, and accessible food systems that also reduce food loss and waste. 

Through the C40 Good Cities Accelerator, 16 cities worldwide are working to deliver sustainable food policies and achieve a “Planetary Health Diet” for all by 2030, informed by the EAT-Lancet Commission on Food, Planet, Health. The cities participating in the Good Food Cities accelerator are Stockholm, London, Paris, Milan, Barcelona, Oslo, Copenhagen, New York City, Toronto, Montreal, Los Angeles, Lima, Guadalajara, Seoul, Quezon City and Tokyo. These cities collectively serve over 500 million meals. Though every city is shaped by local context, good solutions can be quickly scaled and refined to suit other cities facing similar challenges. 

“Receiving the Food Planet Prize is a tremendous honour for all of us here at C40. This recognition reaffirms our commitment to transforming food systems locally and globally and inspires us to continue our dedicated work towards a healthier and more equitable food future for all C40 cities and beyond,” said Mayor Yvonne Aki-Sawyerr, Co-Chair of C40.

“As the Mayor of London, I understand the vital role food systems play in our city. Mayors are pivotal in ensuring schoolchildren receive nutritious meals, all residents have access to healthy and sustainable food, and we actively work to reduce food waste. That’s why C40’s recognition with the Food Planet Prize is such a great honor. This award strengthens our resolve to drive a global transformation, ensuring everyone can access good, healthy food,” added Mayor Sadiq Khan, Co-Chair of C40.

In awarding the Prize to C40 Food Systems, the Food Planet Prize jury commented:

“Cities, where 70% of all food in the world is consumed today, play a pivotal role in the global transformation to healthy and sustainable food systems. C40, a global network of nearly 100 mayors of the world’s leading cities, has a long track-record in climate action and increasingly food systems, and can provide city-led leverage towards positive tipping points that can radically shift the global trajectory towards a sustainable food future.

In particular, the Food Planet Prize jury sees that C40, a locally anchored global force, can work with cities across the world, supporting them in areas of food policy, public procurement and school food programs to reduce food loss and waste, and improve governance. C40 has a unique opportunity to build synergies with other urban sustainability networks on food and provide a city-led global acceleration for our food system.”

Read our feature article about C40 Food Systems work here!

Category: Uncategorized

The Food Planet Prize Shortlist 2024 is here! This year, seven projects made it to the finals, and the winner will be selected on June 28 here in Stockholm! 

The shortlisted projects represent a diverse range of initiatives and showcase groundbreaking approaches to tackling the environmental footprint of our food systems: 

Each project underwent a thorough evaluation by the Food Planet Prize in-house nominations team, followed by academic reviews by leading external experts. 

In partnership with the Roads&Kingdoms magazine, we created a dedicated article – on the winners&nominees page. Enjoy the read! Each is an exciting story about how brilliant minds all over the world try to lessen the environmental damage caused by the way we eat. 

We congratulate the finalists! 

Category: Uncategorized

We are The Curt Bergfors Food Planet Prize and each year we award $2 million to a single winning project that significantly reduces the environmental impact of the way we eat. Our vision is a well-nourished world population on a thriving planet.

Unlike most other awards, we focus on future impact rather than past success.

Right now we are looking for more groundbreaking projects to run for the 2025 Prize!

The prize can be awarded to individuals or organizations in both commercial and non-commercial settings. You can nominate your own initiative or someone else’s. 

Nominations are always welcome, but as our selection process takes just over a year, to stand a chance of winning in 2025, submit your nominations before May 10, 2024.

Nominating a project takes just three minutes but could change the world! 

So do not hesitate and submit your nominations now!

Category: Uncategorized

Announcing the 48 initiatives in the running for the 2024 Food Planet Prize 

There is excitement in the air at the Food Planet Prize office, today is a very special day. It is the day when we confirm and share with you our longlist for the 2024 prize. Out of the roughly one thousand nominees that were registered through our website and examined by our team this year, these forty-eight initiatives represent the very best and most exciting. The initiatives come from all corners of the world and represent a huge variety of elements that together make up our food system, just the way we like it. 

Our team will now look even deeper into these longlisted initiatives. Really getting to know them, trying to understand what they are all about, how big the potential impact would be if they succeed, and how likely it is for this to happen. In April we will have identified 8-10 shortlisted initiatives out of this selection to be presented to our jury, each one a worthy winner from the perspective of The Curt Bergfors Foundation. 

New for this year is that during the first few months of 2024, we will share some of the research material we produce on the longlisted nominees with you. This will happen in the shape of short articles published here on our website and will also be publicized through our social media channels. 

Even if there can be only one winner of the world’s biggest environmental award in the end, all of these nominees do something amazing in their own right, and they all contribute to the urgently needed transformation of our food system. And we really want to tell you about them so that perhaps you can support them too, help them become more successful, or at the very least become inspired by their work.

Lastly, nominations are always open. If you have someone in mind that you think should win the Food Planet Prize, nominate them here through the website. It literally takes three minutes and it could change the world.

The longlisted initiatives for the 2024 Food Planet Prize are:

Africa Wealth Initiative



Aquagrain – More crops less water

Auric Panache


C40 Food Systems Network

Champions 12.3


Community forestry: Protecting Colombian Amazon forest, local food security and regional climate (FCDS)

Community Markets for Conservation (COMACO)

Desert Promise

Eachmile Technologies

Farms not Arms

Feeding the World – A holistic approach to rural community development


Food Systems Dashboard

Fundación Semillas de Vida

Good Food Institute


Inga Tree Foundation

Kelp Blue


Mountain Partnership Products Initiative

Nabahya Food Institute

NAMBOLA: Appreciating past sustainable practices


Nutritious Foods Financing Facility “N3F” Programme

Nuvilab Scanner,

One Planet Plate

Oorja solutions – Climate-Smart Farming Services

Powering Agriculture

Pumpkin Plus

Rich Earth Institute


Regen Kilimo

S4S Technologies

Second Bite – The Farmgate Project

Selva Shrimp – Restorative Mangrove Aquaculture

Shamba Calendar


Strengthening Community Gardens Across America Africa, and the Caribbean

Sustainable Planet – food security & climate mitigation

Terra Oleo

The Restoration Initiative



Vertical and Micro Gardening (VMG)

Category: Uncategorized

The Curt Bergfors Foundation is thrilled to present the Food Planet Prize 2023 to the Agrobiodiversity Index. With US$2 million for one single winner, the Food Planet Prize is the world’s biggest environmental award.

The Agrobiodiversity Index has done something that has never been tried before. It has a vision of using science and empirical evidence to quantify and measure the sustainability of the food system, and translate this into a quantitative index for farmers, businesses, and policy, in order to accelerate the adoption of sustainable and healthy food systems.

“For the Agrobiodiversity Index, winning the Food Planet Prize 2023 means that we can take our work to the next level. Change is a process, and this will allow us to catalyze the process into policies and practices,” commented Sarah Jones, co-lead of the initiative.

“The climate crisis is already well known, compared to the biodiversity crisis. This will allow us to put the agrobiodiversity crisis on the map,” added Arwen Bailey, member of the Agrobiodiversity Index team.

The Curt Bergfors Foundation received more than 1000 nominations for the 2023 edition of the prize. A yearlong evaluations process started with initial reviews by the foundations nominations team resulting in a longlist of the most interesting nominees, picked to equally represent all parts of the food system, a wide geographical spread, and a balanced selection between technological, nature based and social innovation.

From the longlist, ten candidates were selected and put through a rigorous process of academic and practical evaluation, on-site visits by an investigative journalist and a photographer commissioned by the Foundation, and a full compliance and due diligence report. Eight nominees were finally chosen for the Food Planet Prize shortlist and presented to the jury.

On Friday morning (9 June) each of the eight shortlisted nominees were given the opportunity to address the jury in person and tell them why they should win this year’s award, and to answer a few final questions. Following this, final jury deliberations were held and concluded by a vote to select this year’s winner.

For more information on the Agrobiodiversity Index, please click here and here.


Category: Uncategorized

The Curt Bergfors Foundation received more than 1000 nominations for this year’s prize.

The shortlisted nominees offer a wide range of solutions to help move global food production towards a more sustainable, nature-positive, and climate-friendly future. Approaching the challenge from different creative angles, they all aim to deliver solutions for reshaping a global system that is currently exhausting the resources of the planet on which it depends.

Ranging from systems change thinking to new technologies, most of these solutions also take a holistic approach that considers social issues plaguing farmers at the bottom of the food pyramid as well as the fundamental connections between agriculture, climate change and biodiversity. Most importantly, all nominees on the shortlist have great potential to deliver lasting and wide-ranging impact.

The eight short-listed Food Planet Prize Nominees 2023 are:

The Agrobiodiversity Index

The Agrobiodiversity Index helps measure the status of biodiversity in global agriculture. With only nine crops currently making up two-thirds of the world’s crop production, it provides a centralized way to track and understand what is getting lost, risks of low agrobiodiversity, and ways to improve. It could help restore the healthy, rich diets previously provided by local produce. Learn more.


Aponiente is working to cultivate an edible sea grain for the first time. This grain, Zostera marina, can be cooked similarly to rice but has higher protein and fiber levels, and is grown with a much lower climate footprint with no need for irrigation. It could help reduce food insecurity while restoring coastal ecosystems. Learn more.


Coolfood is a one-stop solution to facilitate plant-forward, climate-friendly eating. By taking the Coolfood Pledge, large-scale food service providers commit to reducing their food related GHG emissions by 25% by 2030 with the help of tailored Coolfood tools. This approach could help feed a growing global population while keeping GHG emissions in check. Learn more.

Monarch Tractor

Monarch Tractor has launched a line of the world’s first fully-electric, driver-optional, data-collecting smart tractors, offering an all-in-one solution to an industry struggling with labor shortages and increasing costs while reducing CO2 emissions. It could help revolutionize the future of farming by making it possible to run smaller-scale farms profitably. Learn more.

Protein Challenge Southeast Asia

Protein Challenge Southeast Asia equip protein innovators to embed systems change approaches into the design and implementation of their activities such that they support a deep transition towards a resilient, regenerative and socially just food system in the region.  This holistic approach could help create the systematic change required achieve affordable, nutritious, sustainable protein for all. Learn more.

Ragn Sells Easy Mining

Ragn Sells Easy Mining is pioneering the recycling of phosphorus and other nutrients that are essential components of fertilizers. Their technologies could help improve food security by recovering nutrients from waste to reuse in fertilizers, instead of relying on vulnerable – and finite – global supply chains. Learn more.

Sustainable Rice Platform

Sustainable Rice Platform (SRP) is aiming to redesign the rice value chain from beginning to end. Rice is responsible for feeding half our planet, but also uses one-third of the world’s freshwater resources for irrigation and emits significant amounts of methane. Through education and certified practices, SRP could help feed the world sustainably. Learn more.

The Toothpick Company

The Toothpick Company turns fungi into a bioherbicide to fight Striga, a “master weed” that has devastated an estimated 40 million farms in Africa. Using fungi as weapons in the war on weeds, it could help reduce reliance on chemical herbicides that have proven harmful to ecological and human health. Learn more.

The Food Planet Prize winner will be selected by a jury of world-leading food system specialists located on four continents, chaired by Professor Johan Rockström, Director of the Potsdam Institute for Climate Impact Research, and Magnus Nilsson, the Director-General of the Food Planet Prize.

We congratulate all the short-listed nominees and wish them best of luck for the presentation to the jury and the winner announcement ceremony scheduled to take place on 9 June 2023.


Category: Uncategorized

It’s that time of the year: The 2023 winner of the Curt Bergfors Food Planet Prize, the largest monetary award in the global food arena, will be announced on 9 June.

After a Covid-imposed hiatus, the winner announcement ceremony will take place in person in Stockholm, in the presence of representatives of all short-listed nominees and our esteemed jury. The jury – a distinguished octet of experts in sustainability, food production, and more – will again be co-chaired by Johan Rockström and Magnus Nilsson. Johan, the globally renowned Director of the Potsdam Institute for Climate Impact Research, helped pioneer the concept of “planetary boundaries,” and Magnus, a Michelin star chef, is the Director-General of the Food Planet Prize.

The Food Planet Prize is special.

“It is not only the world’s biggest environmental award, but also one that is unlike almost all other prizes because it does not award you for something you already did, but for what we believe that you will do, if only you get a chance,” said Magnus Nilsson and continued:

 “The Curt Bergfors Foundation and the Prize were shaped by Curt’s vision of a necessary and unavoidable revolution in our food system, and the way that it is structured, which says a lot about him as a person.”

The Food Planet Prize 2023 has received more than 1000 nominated initiatives for this year’s award, and will soon release the shortlist of eight outstanding nominees, one of which will be crowned the deserving winner of the US$2 million prize on 9 June 2023.

Selecting the winner from over 1000 nominees is a 13-month long process with various stages, including meticulous fact-checking, the involvement of investigative journalists and experts in various areas of sustainability, as well as specialists tasked to conduct a proper due diligence and compliance report on each candidate. This process is so rigorous that any of the short-listed projects that makes it through the final analysis stage is worthy of the Prize.

We cannot wait to tell you who has passed the bar set for the winner of the Food Planet Prize 2023. Check back soon for the announcement of the short-listed projects!

2022 Prize Winner ColdHubs is fixing food loss with off-grid cool rooms. Fresh food sellers like these in Abuja, Nigeria use Coldhubs cold room at the market to keep their products. A practice that has reduced the seller’s business waste by over 50% and in turn increases their profit.


Category: Uncategorized

The ocean provides food and livelihood to billions of people, as well as oxygen for every second breath we take. But in many aspects, the big blue stands on the brink of collapse. At the point when the pace of extinctions on land started accelerating, in fact. As demand for blue foods soars, will the ocean economy boom offer a blueprint for a sustainable food planet?

Life has existed in the ocean for three times longer than on land. What was once considered an endless resource is, of course, finite and vulnerable to human activity. Evidence clearly shows that overexploitation, climate change, and pollution are endangering biodiversity, destroying fragile marine habitats, and putting the ocean’s ability to feed us in jeopardy.

Since land-based food sources are faring even worse – and wholly exhausted for some – powerful players are rushing into the ocean. Would they extend their lucrative yet environmentally harmful and socially unjust practices to the last wild commons? Will they turn the sea into a copy of the industrial food system shaped by intensive agriculture?

Many bet on the blue economy to get right what land management got wrong. To succeed, established actors and new entrants would need to leave old habits at bay and surf new waves of thinking.

Freeing the last wild commons from our cravings

The man-made sixth mass extinction has wiped out around 500 terrestrial species over the past 500 years. In oceans, it’s radically altering marine ecosystems and the genetic structure of many species. If we continue with the status quo, human impact on marine biodiversity might soon rival that on land.

Decreasing fish stocks
Figure 1: Adapted from Pauly et al. (1998). Fishing Down Marine Food Webs. Science, 279(5352, pp. 860-863 and Jackson et al. (2001). Historical Overfishing and the Recent Collapse of Coastal Ecosystems. Science, 293(5530), pp. 629-637.

So far, scientists have recorded “only” 15 extinctions of marine species. They, however, also agree that we’re on the brink of a ripple effect as thousands of other species are endangered. On the one hand, this is a direct result of sourcing more than three-quarters of the 120 million tons of marine fish extracted from the ocean every year from overexploited stocks. On the other hand, the very activities currently in place to make up for plummeting catches represent dangers in their own right.

Understanding the deep sea, not emptying it

As fish stocks run dry, ships redirect hunting efforts beyond coastal zones. An increasing share of our beloved seafood, therefore, comes from the hyper-abundant open ocean and deep sea. This vicious cycle can create a “gold rush effect,” where we damage ecosystems before getting a chance to understand the target species’ basic biology, the implications for other species, and the ecological interactions at stake.

The ocean covers 71% of the earth’s surface. So, there’s a lot to explore and exploit, but there’s also a lot to safeguard. This thin line is critically important to realize the ocean’s role as nutrient provider. Luckily, fewer extinctions do mean that even a modest release of pressure will allow the ocean’s resilience to kick in and recovery to begin. States can play a predominant role in this balancing act since most high seas fishing would be unprofitable without large subsidies.

Curtailing diseases by farmed animals

Marine aquaculture is another coping mechanism with a long list of side effects. It contributes to the global rise of antimicrobial resistance because of the enormous amounts of antibiotics used to prevent the spread of bacteria in overcrowded enclosures. Escapee fishes infect native ones. And then some.

Mariculture’s prioritization of high-value export species like crown-jewel salmon – while wild stocks are replenishing – can also be seen as a diversion. Ship crews continue to throw highly nutrient species overboard as bycatch. Fishes that could perfectly be part of our healthy food pyramid. So, to be sustainable, the blue food economy’s offering needs to focus on people and planetary needs instead of satisfying our cravings.

Avoiding the crossing of marine tipping points

Oceans play a central role in regulating our climate. Due to its vastness and heat absorption qualities, it’s been instrumental in limiting human-induced temperature rise. It sequesters 25% of the carbon we emit. Even more impressive, between 1970 and 2010, the ocean soaked up 93% of excess heat accumulated in the Earth system. But that causes it, in turn, to warm.

Ocean warming has dire consequences on our food supply. It could lead to turnovers of over 60% of current marine biodiversity in sub-polar regions and the tropics. Most at risk are species that end up on our plates.

By taking up CO2, oceans also acidify. Ocean acidification is a high impact, high probability tipping point that already affects calcifying organisms today. A series of massive oyster die-offs have indeed been recorded in the U.S. since 2006 as acidic seawater eats away their shell, leaving them unable to feed.

And ravages of global warming will impact the big blue all the way down to the deep sea’s biological carbon pump. This is the ecologically essential mechanism by which carbon-containing compounds are exported from the surface to the deep ocean. We just don’t know how or to what degree the process will be disturbed.

Curing the ocean of the plastic plague and other poisons

The ocean has gone from wild and pristine to littered and contaminated by dreadful pollutants in just a few generations. Manufacturers have produced approximately 6,300 million metric tons of plastics since the invention of this petroleum byproduct. Only 9% has been recycled. A colossal chunk has found its way into the oceans, killing many marine animals. As it slowly breaks into smaller pieces, currents and winds scatter it further and further, century after century.

A fish stuffed with plastic
Choked by plastic pellets, one of the countless beached fish that washed ashore in Sri Lanka as the Singaporean ship MV X-Press Pearl caught fire just outside Colombo’s harbor in May 2021. Photo: Sipa USA/Alamy

Through food, these microplastics end up in our stomachs. On average, we eat a credit card-sized amount of it each week. Microplastics have also been linked to algal and jellyfish blooms. In fact, scientists point out that humans are engineering an Anthropocene ocean much more suited for nutritionally poorer jellyfish, which thrive in gutted areas.

Besides plastic, mercury is another widespread ocean pollutant. All seafoods contain it at varying concentration levels. It’s a persistent, neurotoxic substance that can severely impact the health of those who eat fish. Unfortunately, rising ocean temperatures will further increase bioaccumulation, becoming an even more significant threat to humans.

In the face of all these threats, how can we create a sustainable blue foods future?

Shifting to nature-positive blue foods

Despite overfishing and pollution, many seafoods still compare favorably to terrestrial protein sources. Small pelagic fish and bivalves create the smallest environmental footprints across capture fisheries and aquaculture.

However, blue foods are by no means a silver bullet. As production expands and demand should double by 2050, it’s critical to prioritize sustainable practices. Regenerative marine plants then emerge as the Swiss army knives of the ocean.

Kelp is is central to sustainable blue foods economy
Kelp floating underwater with light beams

When people think about food from the ocean, few think of plants. Yet, the diversity of plants flourishing in the sea is immense. Given its versatility, seaweed could become a pillar of a sustainable ocean economy. However, like many marine ecosystems, macroalgal (seaweed) and seagrass forests are degrading rapidly due to rising temperatures and marine heatwaves. Farming can come to the rescue.

Mimicking seagrass and seaweed forests, farms can protect coastlines by dampening wave energy during storms. And their environmental role doesn’t stop there. By altering PH levels and generating oxygen, they combat ocean acidification and deoxygenation locally.

These “lungs of the sea” also sequester carbon. Seaweed farms have an assessed carbon mitigation capacity of about 1 500 tons of CO2 per km² per year. Today, they capture only about 0.4% of the carbon their wild counterparts do, but estimates suggest it could rise to 6%. The marine plant also reduces emissions from terrestrial agriculture when incorporated into cattle feed, an innovative approach that allowed Future Feed to win the 2020 Food Planet Prize.

When cultivated with bivalves like mussels, marine algae can be a vital part of coastal habitat restoration. This integrated system is at the forefront of large-scale, sustainable aquaculture with a minimal environmental footprint. Once again, a Food Planet Prize Winner, this time GreenWave, is the pioneer behind this regenerative farming system.

Shifting to healthy diets with blue foods

If they are beneficial for the environment, the question then becomes: can blue foods support a shift toward a healthy food system? According to U.S. Special Envoy for Climate, John Kerry, the answer is yes. At the 2021 “Our Planet, Our Future” Nobel Summit, he declared that “We can have 50% of the food that we need from the ocean”. This may be true, but there are critical considerations to take into account.

Aquatic foods can indeed help us reduce the consumption of land animal protein, as recommended by EAT-LANCET Commission on healthy diets from sustainable food systems. They are packed with a diversity of critical nutrients difficult to get elsewhere in such density. And there remains significant untapped potential.

Sustainable blue foods economy means eating more of what we catch
Fresh seafood in fish market in Busan, Korea. – Photo: Getty

Of the 2,000 or so aquatic species we catch, and over 425 we farm across both freshwater and marine environments, a mere 23 species account for 70% of our diets. And they are not equally nutritious. But even less nutrient-rich blue foods may still be healthy replacements for red meat. So, we need to eat more of what we catch or farm rather than transform it into feed.

There are huge distributive differences too. Aquatic foods contribute 17% of animal protein consumed globally. In some countries, however, they represent well over 50%. But even in these countries, export is prioritized. Consequently, ship crews throw highly nutrient species overboard as bycatch, undermining their own population’s food security.

Then, intensive aquaculture’s rapid development also adds layers of nutritional challenges. It incentivizes people to move away from local fish to farmed species. In Bangladesh, for example, tilapia is replacing catfish and hilsa, which provide five times more vitamin B12 than the former.

Speeding into a bright blue foods economy

Since the ocean’s capacity to feed us all is inextricably linked to the stress we put on it,

we are prompted to protect and utilize it simultaneously. To continue to harvest precious nutrients in the future, avoiding traps land agriculture fell in and embracing novel thinking are of the essence. Securing equitable use of shrinking resources is one of such considerations.

Sustainable blue foods economy needs to include small-scale fishers
When thinking about the future of the ocean and the food system, it is crucial that we draw inspiration from the past and not limit ourselves to the perceived reality of the present. A typical local artisanal fishing boat in Zanzibar’s archipelago. Photo: Getty

Currently, 100 companies account for 60% of total revenues across all core ocean industries. Many are multinationals representing economic sectors, business models, and worldviews of the 20th century. This high concentration risks turning the ocean into a replica of the exploitative, unjust, and low-cost operational models used on land.

The boom of the ocean economy can seem hyper-capitalist and neo-colonialist. After all, for the most part, it disregards small-scale fishers, coastal communities, indigenous peoples, and developing island states. All the while, small-scale fisheries account for half of wild captures and over 90% of employment in the sector. Yet, they continue to be given much less weight in policy discussions and international negotiations.

Nevertheless, Stockholm Resilience Centre’s researchers argue in the recent The Blue Acceleration – The trajectory of human expansion into the global ocean that things will work out better with the renewed momentum of ocean economic development. Organizations like Blue Justice Initiative International, for instance, combat transnational illegal fishing and help achieve sustainable and equitable marine fisheries management.

Leveraging conflicts to drive transformation

The blue acceleration is no magic wand for social sustainability. Fish escaping tanks spread sea lice and other diseases in wild populations, which creates conflict with fishers. Few corporations still dominate the ocean economy, perpetuating unequal access to resources. The Focus on high-protein species, coupled with the practice of throwing perfectly nutritious “bycatch” overboard, threatens coastal fishers’ livelihoods and low-income countries’ food security. Reducing fish catches spurs illegal, unreported, and unregulated fishing, which leads to an array of conflicts worldwide. Etc. However, the ocean economy boom prompts the world to see and resolve confrontations that otherwise occur out of sight of land.

The new battleground can therefore generate opportunities for social-ecological transformation. Conflict can force the diverse group of players with diverging values and incentives to the table, finding new solutions away from incremental thinking. Low-intensity, non-escalating conflict can also effectively raise awareness, push public debate, and incubate social justice movements.

Actively exploring alternative futures can increase the chances for the ocean to remain a foundational contributor to the global food system and a source of social, cultural, and legal identity for many communities worldwide.

This article is based on the research report Can we Bring the Oceans Back from the Brink? published in November 2021. The report was commissioned by the Food Planet Prize and authored by Dr. Andrew Merrie, Stockholm Resilience Centre.

Category: Uncategorized

We’re currently experiencing the most rapid global warming in thousands of years. The latest IPCC report, released earlier this month, paints a somber picture of what many are facing and what awaits if we fail to act in the next couple of years. An “atlas of suffering,” as UN General Secretary António Guterres calls it. Inaction could indeed close the small window of opportunity we have for adaptation and make food security a luxury reserved for the richest few.

Raging wildfires, rising sea levels, punishing droughts, and devastating storms are becoming all too frequent as global temperatures increase. Despite most nations’ pledges to reduce greenhouse gas emissions, we’re still moving toward a rise of around 3°C by 2100. This goes beyond the 2°C goal negotiated in the 2015 Paris Agreement and the 1.5°C safety mark set by the IPCC. It’s also above anything our planet has experienced in the past three million years.

We are thus on a fast track to unknown planetary conditions and near-certain starvation for the most vulnerable among us. Accounting for the global population’s estimated growth from eight to ten billion by 2050, the difference between 1.5°C and 3°C of warming could mean a fifty-fold increase in the number of people affected by hunger.

Already today, extreme weather – caused by climate change – is the main culprit of agricultural loss. Soils are degrading, freshwater supplies are drying out, and yields are plummeting. The food system, including agriculture, is not only a victim of global warming, it is also the single largest greenhouse gas emitter. Pushing it toward a sustainable, resilient future requires nothing less than a revolution across its value chain.

Avoiding eating our way to the last supper

As things stand now, the world’s food system could get in the way of meeting the 1.5°C target. It contributes nearly 35% of annual greenhouse gas emissions, around 40% of which originates from production. And a 2018 study showed that by 2050, its environmental effects could further increase significantly.

But not all foods are made equal. There’s a dramatic emissions imbalance between plant- and animal-based food sources. The latter contributes close to 60% of food production emissions, despite providing only 37% of our protein and a mere 18% of our calories.

Feedlot cattle in Amazon
Aerial view of oxen grazing on feedlot cattle farm in Amazon, Para, Brazil.

Reducing the impact of red meat, in particular, is an acute challenge as one kilo of beef generates the equivalent of 60 kilos of carbon dioxide (CO2e). In contrast, the same amount of fruits and vegetables emits less than one kilo CO2e.

If eating patterns continue on their current paths, we will need to increase crop production by 60% before 2050. We could, however, save one gigaton CO2e if half the world’s population shifted to a plant-based diet. Changes to agricultural management practices could deliver another gigaton CO2e.

To avoid eating our way to the last supper, we must also ensure that as little as possible of our painstakingly produced food is squandered. Because halving our total food waste and loss can reduce emissions by an additional gigaton CO2e.

How come food is so intrinsically linked to the climate?

A stable climate laid the foundation for agriculture

Over the past three million years, planet Earth has self-regulated within -6°C below and +2° above the 14°C average observed during the pre-industrial era. However, for the past 12,000 years, and up until the Industrial Revolution, global average temperatures didn’t waver more than 0.5°C. CO2 concentrations in the atmosphere remained steady too: between 250ppm and 270ppm.

This period of relative climate stability, known as the Holocene, laid the foundation for sedentary agriculture. That it sprouted in up to nine geographically separate areas around the same time, while Homo sapiens had already roamed the Earth for around 150,000 years, underlines how important the Holocene climate conditions were for the emergence of farming. Why? The explanation is quite simple! To grow, plants absorb CO2  – together with sun and chlorophyll. But too much of the good stuff hinders their growth. As does too little.

Therefore, exceeding 2°C will put pressure on agricultural yields worldwide and reduce the nutritional quality of what we eat. Both pose health risks at best and survival risks at worst. It will also trigger irreversible shifts and potentially force the planet toward “Hothouse Earth” – an extreme state last experienced some 56 million years ago when global mean temperatures were 5 – 8°C higher than today.

The Anthropocene: tractors in the fast lane 

Human activities began to fundamentally transform the planet already during the Holocene. By domesticating livestock, tilling land, and clear-cutting forests for cultivation, humans altered natural landscapes and drove the extinction of megafaunas.

But it was the Industrial Revolution that sparked the relationship between human prosperity and mounting pressure on the Earth systems and the climate. We started tapping into millions of years of energy stored in coal to feed machinery that, in turn, generated greenhouse gases. CO2, aerosols, methane, ozone, and nitrous oxides are among the most powerful. Their concentration in the atmosphere regulates how much of the sun’s rays reach the earth’s surface, determining the warmth of the earth. Today, although the fossil fuel, forestry, and transport industry are also to blame, two-thirds of the greenhouse gases created by humans come from the food system.

Modern food system's engineered landscape
Crop circles in Kansas, USA, illustrate our systematic engineering of landscapes, a landmark of the Anthropocene. Photo: NASA

The Industrial Revolution revamped agricultural practices. It allowed for the systemization of deforestation, the engineering of landscapes, the capture of nitrogen from the air to produce synthetic fertilizers, etc. All of which paved the way for intensive farming.

By the middle of the 20th century, all that progress had triggered a radical “Green Revolution.” Granted, standardized techniques and high-yielding crops made it possible to increase production and reduce hunger. Still, it also plundered the planet’s resources, polluting air and waterways and cementing our climate interference.

Scientists agree that these abrupt changes define the beginning of a new geological era: the Anthropocene. An epoch in which humans have become a global force for geological change. In the face of frightening transformations, they are determining thresholds at which this accumulated pressure will exceed our planet’s ability to absorb it.

Approaching the tipping points

Since the early 2000s, a set of processes, patterns, and ecosystems has been identified as tipping elements. Driven beyond critical thresholds, these factors could trigger a domino effect of climate calamities. And the risk increases with rising global temperatures. At 1.5°C higher than pre-industrial levels, we risk activating up to five of the tipping elements. Which could make pushing the “stop” button on climate change almost impossible. And there are already signs pointing to certain critical elements being on the verge of collapse. As is the case for ice sheets.

climate change pushes tipping elements to the edge
Red alerts. Five tipping elements, spread across the world, could cause a domino effect of climate calamity, already at +1.5°C. Source: Schellnhuber et al. Nature Climate Change (2016), Steffen et al. (2018), PNAS

Ice sheets play an essential role in the earth systems. They regulate the temperature of the water and air around them, driving circulation patterns that determine weather conditions across the globe.

With average temperatures in the Arctic warming almost twice as fast as the rest of the planet, the Greenland ice sheet, for example, has thinned considerably in recent years. As its surface sinks, it comes into contact with lower, warmer layers of air, leading to further melting. The irreversible loss of the Greenland ice sheet could be reached if the global temperature rises by slightly less than 2°C.

This would inject massive amounts of fresh water into the ocean, possibly leading to a complete shutdown of the Atlantic Meridional Ocean Circulation – one of the most powerful ocean circulation patterns. It’s essential for temperature regulation and the redistribution of nutrients, salt, and other gases across all oceans. At 2°C, regions relying on snowmelt could experience a 20% decline in water availability for agriculture after 2050.

Transgressing these individual tipping points would wreak havoc on our Earth system. But the interconnectedness of tipping elements suggests an even greater risk of permanently leaving the Holocene climate conditions if one or more of them were triggered. At that point, cascading effects could thrust us on a path toward a Hothouse Earth.

Taking the reins of the 21st century

Each degree of global warming will put pressure on agricultural yields worldwide. On land, global maize yields could drop by up to 7.4% with each additional degree. The picture looks fairly grim for wheat, rice, and soybeans too. Their yields could drop by 3% to 6%. Fruits and vegetables will likely not fare much better. At sea, since oceans absorb the majority of excess CO2, fish are dying, and, by extension, our food supply is diminishing.

Heat stress will also lead to reduced food quality, thereby increasing food waste. Making matters worse, ozone concentration and soil salinization can reduce the nutritional quality of what we eat, posing additional risks to human health. These losses will vary greatly from region to region, but already vulnerable areas will endure the worst of it.

On a societal level, compound risks are significant. Since heat stress reduces productivity, either farmers’ livelihood will shrink, or food prices will go up. Both scenarios can, in turn, have local and international economic effects.

But as much as our food is a big part of the climate problem, it has to become a bigger part of the solution. And there is good news. Science suggests that the food system has the potential to deliver 4 Gt CO2-equivalents per year. That’s around one-quarter of the required emissions reductions by 2050.

Transforming the food sector from a carbon source to a carbon sink – while at the same time feeding a growing world population – will be an existential challenge over the next three decades. But it is now that the level of ambition must increase. Get inspired and check out these outstanding projects doing just that.

This article is based on the research report The Foul Breath of Climate Change published in October 2020. The report was commissioned by the Food Planet Prize and authored by Dr. Johan Rockström and Dr. Lila Warszawski.

Category: Uncategorized

The relationship between land use and agriculture is a tale of how human beings have pushed natural resources to their limits. Human-induced land changes result in the loss of natural ecosystems, like forests and grasslands, as well as biodiversity. They also increase greenhouse gas emissions and diminish ocean health.

Pressured beyond its limits

With the increasing need to grow edible crops, feed livestock, and produce biomaterials and biofuel, land use is pressured beyond its limits. Since 1961, the amount of arable land needed to produce the same quantity of crops has declined by a whopping 70%. But that efficiency comes at a cost. As discussed in our long read Managing the Food System’s Main Asset: Land, it led to chemical contamination, pollution, salination, soil erosion, nutrient depletion, overgrazing, deforestation, and desertification.

Three main phenomena drive the expansion of pastures and cropland. First, a growing global population coupled with the increased consumption of animal products puts pressure on land resources. As more and more households enter the middle class, they spend a bigger portion of their income on meat. Second, the demand for plants- and fungi-derived biofuels and biomaterials is growing. And finally, as agricultural land degrades and becomes less fertile, new, ever-larger areas are exploited for planting and grazing.

Depleting our Planet’s greatest carbon sink

If we continue this business-as-usual scenario, the global amount of arable and productive land per person in 2050 will fall to a quarter of its 1960 levels. Unhealthy soils also mean losing the Planet’s greatest carbon sink. Indeed, soil is not only the backbone of the food system; it also plays a crucial role in absorbing carbon from the atmosphere. Healthy soils contain over twice the amount of carbon found in trees and other kinds of biomass. Depleted, they lose their ability to store carbon effectively, which creates a vicious cycle: reduced storage capacity makes the world hotter, and higher temperatures degrade soils further.

Since heat and drought are projected to increase worldwide with global warming, land degradation will amplify food security, famine, migration, and political turmoil. Land is one of the very few productive assets possessed by the rural poor, and most poor rural households engage in some form of agriculture. Yet poverty – and lack of sufficient land to practice crop rotation – forces people to put pressure on fragile resources by, for example, letting their livestock overgraze. This pressure causes resource mismanagement and lost livelihood opportunities. In other words, poverty both drives and is driven by land degradation. The trap created by land degradation, poverty, and inequality poses significant challenges to the development of low-income households. Each one of these dimensions is intrinsically interconnected and influences the other. This means that we cannot solve land degradation without addressing the root causes of poverty and inequality in society.

The relationship between land and water is also intertwined. If land and soil are well managed, they can act as important filters, absorbing and storing excess water in times of flooding and slowly releasing stored water during times of drought. But agriculture, as it is practiced today, has a way of upending that balance; irrigation currently accounts for 90% of global freshwater consumption. At the same time, nutrient and sediment runoff from agriculture — responsible for more than 50% of the nitrogen and phosphorus delivered from land to ocean — threatens aquatic life. “Dead zones” — large zones of low-oxygen water that affect hundreds of thousands of square kilometers of marine ecosystems — are one result. So too is contaminated groundwater, since whatever is applied to the soil, including nitrates from fertilizer, will eventually find its way into aquifers.

Drought, land use, and soil health are also interconnected. Healthy soil retains water, which in turn supports the plants and other organisms that grow there. But a lack of rainfall will quickly disrupt this system. While the effects of droughts may not be immediately apparent, they can be devastating and deadly. And as drought occurs more frequently, it can make it increasingly difficult for the soil’s water reserves to recover between dry spells. Heat and drought are projected to increase worldwide as global warming continues. In turn, this will amplify land degradation. But we still have a choice: drought can either be mitigated or exacerbated by changes in land use and cover. It’s what we do with the land that will soften the blow.

Lost land of plenty

As the global population grows in size and affluence, land-use change also reduces the Planet’s biodiversity. In fact, the insatiable demand for agricultural products has made land-use change the most crucial factor in biodiversity loss. Approximately one out of every eight plant and animal species on this Planet is now threatened with extinction. These numbers do not apply to wild animals alone: 9% of all domesticated breeds of mammals used for food and agriculture had become extinct by 2016, with at least 1,000 more breeds still threatened. Just a handful of foods can do a lot of damage. Beef, for example, is the single most important driver of biodiversity loss. When cattle grazing encroaches on new territory, forest cover often suffers, as trees are removed and with them the habitats for insects, birds, fish, and other critters who live amid their branches, trunks, and roots. Oilseed, an essential component in livestock feed, is another food with an outsized impact on land-use conversion.

Beyond environmental consequences, land degradation’s social and economic implications are immense. According to estimates, the total annual costs of global land degradation due to land-use and land-cover change (including external losses in carbon sequestration, biodiversity, genetic information, and cultural services) are about US $231 billion per year. It also drives migration. Over 1.3 billion people, or approximately 17% of the world’s population, live on agricultural lands whose already precarious condition is further impaired by climate change and poor management strategies. When those lands can no longer adequately sustain the communities that depend upon them, their inhabitants will be forced to seek other places to settle. Land degradation, together with the closely related problems of climate change, is estimated to cause 50-700 million people to migrate, according to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.

Are we ready to better manage the food system’s main asset? Read the full article.

Nominate yourself or someone else, it takes three minutes and could change the world!